Matura z matematyki - ~ Oś liczbowa i układ współrzędnych na płaszczyźnie
  Witamy!!!
  Liczby i ich zbiory:
  ~ Działania na zbiorach
  ~ Zbiór liczb rzeczywistych i jego podzbiory
  ~ Działania arytmetyczne na liczbach rzeczywistych
  ~ Potęga o wykładniku wymiernym
  ~ Oś liczbowa i układ współrzędnych na płaszczyźnie
  ~ Indukcja matemaczna
  ~ Wartość bezwzględna liczby
  ~ Przybliżenia liczbowe
  ~ Obliczenia procentowe
  Funkcje i ich własności:
  ~ Funkcja i jej własności
  ~ Sposoby określania funkcji
  ~ Własności funkcji
  ~ Dziedzina funkcji
  ~ Miejsca zerowe funkcji
  ~ Monotoniczność funkcji
  ~ Najmniejsza i największa wartość funkcji
  ~ Inne własności funkcji
  ~ Przekształcanie wykresów funkcji
  ~ Symetria względem osi OX
  ~ Symetria względem osi OY
  ~ Symetria względem środka układu współrzędnych
  ~ Translacja
  ~ Nałożenie wartości bezwzględnej
  Funkcja liniowa:
  ~ Wzór i wykres funkcji liniowej
  ~ Równanie liniowe z jedną niewiadomą
  ~ Nierówności liniowe z jedną niewiadomą
  ~ Układ równań z dwiema niewiadomymi
  ~ Układ równań z parametrem
  ~ Układ równań z trzema niewiadomymi
  Funkcja kwadratowa:
  ~ Wiadomości wstępne
  ~ Postać kanoniczna i wykres funkcji kwadratowej
  ~ Równania kwadratowe
  ~ Nierówności kwadratowe
  ~ Postać iloczynowa
  ~ Wzory Viete'a
  ~ Równania i nierówności z parametrem
  Wielomiany:
  ~ Definicja wielomianu
  ~ Działania na wielomianach
  ~ Dwumian Newtona
  ~ Rozkład wielomianu na czynniki
  ~ Twierdzenie Bezouta
  ~ Równania wielomianowe
  ~ Nierówności wielomianowe
  Funkcja wykładnicza i logarytmiczna
  ~Przypmnienie działań na potęgach
  ~Funkcja potęgowa i jej własności
  ~Rozwiązywanie równań i nierówności potęgowych
  ~Funkcja wykładnicza i jej własności
  ~Rozwiązywanie równań i nierówności wykładniczych
  ~Pojęcie i własności logarytmu
  ~Funkcja logarytmiczna
  ~Rozwiązywanie równań logarytmicznych
  ~Rozwiązywanie nierówności logarytmicznych
  Trygonometria
  ~Funkcje trygonometryczne kąta ostrego
  ~Miara łukowa kąta
  ~Funkcje trygonometryczne kąta dowolnego
  ~Własności funkcji trygonometrycznych
  ~Wykresy funkcji trygonometrycznych
  ~Tożsamości trygonometryczne
  ~Wzory redukcyjne
  ~Równania trygonometryczne
  ~Nierówności trygonometryczne
  Ciągi liczbowe
  ~Pojęcie ciągu
  ~Monotoniczność ciągu
  ~Ciąg arytmetyczny
  ~Ciąg geometryczny
  ~Suma częściowa ciągu
  ~Inne przykłady ciągów
  ~Rekurencja i indukcja matematyczna
  ~Granica ciągu liczbowego
  ~Procent składany, oprocentowanie lokat i kredytów
  Planimetria
  ~Zagadnienia ogólne
  ~Wielokąt foremny i wypukły
  ~Czworokąt
  ~Trapez
  ~Romb
  ~Równoległobok
  ~Kwadrat
  ~Prostokat
  ~Deltoid
  ~Trójkąt
  ~Okrąg dziewięciu punktów
  ~Trójkąt prostokątny
  ~Okrąg i koło
  Księga gości
  Kontakt
  Licznik

Oś liczbowa

DEFINICJA

 

Oś liczbowa jest to prosta, na której wyróżniono kierunek, punkt zerowy oraz jednostkę.

Możemy przyporządkować każdej liczbie rzeczywistej dokładnie jeden punkt na osi liczbowej czyli np. 1, -1000,  pi=3.1415dots . Taką liczbę nazywamy współrzędną. Na powyższym rysunku zostały wyróżnione punkty o współrzędnych całkowitych, a także położenie trzech często spotykanych liczb niewymiernych.


Układ współrzędnych kartezjańskich


Układ współrzędnych kartezjańskich (prostokątny) – prostoliniowy układ współrzędnych o prostopadłych do siebie osiach.

Układem współrzędnych kartezjańskich nazywamy układ współrzędnych w którym zadane są:

  • punkt zwany środkiem lub początkiem układu współrzędnych, którego wszystkie współrzędne są równe zeru, często oznaczany literą O lub cyfrą 0.
  • zestaw n osi liczbowych zwanych osiami układu współrzędnych, z których każde dwie są do siebie prostopadłe i których zera znajdują się w wybranym początku układu. Dwie pierwsze osie często oznaczane są jako:
    • OX (pierwsza oś, zwana osią odciętych),
    • OY (druga, zwana osią rzędnych),
Liczba osi układu współrzędnych wyznacza tzw. wymiar przestrzeni.

WSPÓŁRZĘDNE

Aby wyznaczyć k-tą współrzędną zadanego punktu P:

  1. Tworzymy rzut prostokątny punktu P na k-tą oś, tzn. konstruujemy prostą przechodzącą przez P i prostopadłą do k-tej osi a następnie znajdujemy punkt przecięcia tej prostej z k-tą osią.
  2. Wartość w uzyskanym punkcie osi jest k-tą współrzędną P.

Trzy pierwsze współrzędne są często oznaczane jako:

  • x – odcięta, łac. abscissa,
  • y – rzędna, łac. ordinata,
  • z – łac. aplicata.

Właśnie ze sposobu wyznaczania współrzędnych punktu (poprzez rzut prostokątny) kartezjański układ współrzędnych zyskał również nazwę prostokątnego układu współrzędnych używanego przede wszystkim w szkołach.

Dzisiaj stronę odwiedzjużiło 18563 odwiedzający
Ta strona internetowa została utworzona bezpłatnie pod adresem Stronygratis.pl. Czy chcesz też mieć własną stronę internetową?
Darmowa rejestracja